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Layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes on
different templates by alternating deposition is a versatile method enabling the
construction of ultrathin multilayer films with tunable thickness, composition,
and functions. The principal driving force for the LbL self-assembly is
dominantly the electrostatic attraction between the polyelectrolyte components
accompanied with other associative interactions, such as hydrogen-bonding,
hydrophobic interaction, charge-transfer and so on. The LbL self-assembly
technique has been a powerful tool for micro/nano-encapsulation. Our strategy is
to fabricate the nano-multilayer wall for micro- and sub-microcapsules by the
LbL of polyelectrolytes, particularly natural polymers chitosan (CHI) and
alginate (ALG) for drug controlled release. Our recent work following this
strategy is reviewed in the present article. After determining the charge density
threshold for the LbL assembly, we immobilised enzymes of urease and
superoxide dismutase on polystyrene nanoparticles through the LbL and found
the decrease in enzyme bioactivity but an increase in their storage stability.
We successfully fabricated the nanocapsules from natural polysaccharides of CHI
and ALG multilayers by the LbL for drug release. The LbL self-assembly of CHI
and ALG was used directly on indomethacin (IDM) microcrystals to reduce the
release rate. We observed that increasing deposition temperature would produce a
more perfect multilayer film with higher thickness and reduced the release rate
efficiently. Water soluble protein insulin was spontaneously loaded into the
LbL CHI/ALG microcapsules due to the electrostatic attraction and a
two-temperature loading procedure was suggested to increase the loading
capacity and to reduce the release rate. The LbL multilayers have been used to
encapsulate the drug-loading microparticles made from solvent evaporation or
adsorption with porous CaCO3 microparticles to enhance the loading capacity
and suppress the initial burst. Increasing the layer number, raising the deposition
temperature, and cross-linking the neighboring layers were confirmed to slow
down the enzymatic desorption of polyelectrolyte multilayer films and the release
rate of encapsulated drug effectively.
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1. Introduction

In 1966, Iler [1] described the formation of layers of the charged particles by adsorption
from solution. Films comprising alumina fibrils, (positively charged, 5–6 nm in diameter),
and silica colloids (negatively charged, 100 nm diameter) were prepared on hydrophilic
glass surfaces with thicknesses ranging from 50 to 500 nm. Following the pioneering work
of Decher in the early 1990s, surface modification via the layer-by-layer (LbL) solution
deposition technique gained momentum, and was expanded to include sequential assembly
of oppositely charged polymers (or biopolymers) and nanoparticles to produce
polyelectrolyte multilayer thin films as a coating [2,3]. The stepwise growth of the
multilayer film is driven by ion pair formation between oppositely charged polyelectrolyte
segments, stabilising the evolving amorphous nanocomposite structures. Ion pairing is
largely athermal, driven by increased entropy from the release of salt counter ions
originally neutralising the polyelectrolytes in solution [4]. In the last decade, LbL
self-assembly technique was developed as a powerful method for the nano- and micro-
encapsulation [4–6], where polyelectrolyte multilayer films were elaborated on various
particles through alternating deposition of oppositely charged polyelectrolytes due to their
electrostatic attraction accompanied with other associative interactions, such as hydrogen-
bonding, hydrophobic interaction, charge-transfer and so on [7–12].

Efficient micro-encapsulation of active ingredients, such as drugs, proteins, vitamins,
flavours, gas bubbles, even living cells, is becoming increasingly important for a wide
variety of applications from functional foods to drug delivery in biomedical applications
[13–16]. Nano- and micro-encapsulation via LbL self-assembly has potential applications
in biochemistry, pharmaceutics, controlled release, cosmetic, and catalyst [4–6]. The first
approach directly used proteins, for instance, as the depositing species to prepare bioactive
core-shell particles [17–19]. The second approach involved direct coverage of drug
microcrystals, such as ibuprofen (IBU) [20,21], furosemide [22], vitamin K3 [23], insulin
[23], dexamethasone [24,25], and indomethacin [26–28] with polyelectrolyte multilayer
films for prolonged release. The third approach demonstrated fabricating hollow
microcapsules with polyelectrolyte multilayer walls by removing the template cores and
loading drugs, enzymes, and proteins into the capsules for delivery [29–32]. The fourth
approach was to encapsulate the drug-loaded nano- or microparticles with polyelectrolyte
multilayer films to suppress the initial burst [33,34].

2. Charge density threshold for LbL self-assembly

As the starting point, we investigated the charge density effect on the film growth and
permeability to small molecules taking the merit of high sensitivity of fluorescence labels.
Polyelectrolyte multilayer films were prepared via the LbL self-assembly using
poly(diallydimethylammonium chloride) (PDADMAC) and pyrene labelled polyanions
of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and N,N-dimethylacrylamide
copolymers with different AMPS mole fraction FAMPS¼ 0.20–0.999. Multilayer growth
with deposition from polyelectrolyte solutions was monitored by fluorescence intensity
and film thickness (Figure 1), showing a charge density (represented by FAMPS) threshold
between 0.574 (ADPy-30) and 0.711 (ADPy-45) for our polyanion, below which the
multilayer cannot be formed due to desorption in the following depositions. For the fully
charged polyanion, thickness of the multilayer film increased with increasing NaCl

134 C. Wang et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
1
7
 
1
5
 
J
a
n
u
a
r
y
 
2
0
1
1



concentration in the deposition solution; while for other polyanions with lower FAMPS,
little growth in multilayer films was found when the polyelectrolyte solutions contained
NaCl of 0.02mol L�1 or higher. The quenching rate of nitromethane to the pyrene label in
the multilayer film was adopted to detect the permeability of these films. Decreasing the
charge density, increasing the salt concentration in deposition solutions, and reducing the
layer number accelerated the quenching. The former two factors are due to the looser
structure in the multilayer films, while the last factor is mainly due to the reduction of
multilayer barrier capacity.

3. Bioactive nanoparticles fabricated by LbL

A novel core-shell colloid with multilayer for biocatalysis was elaborated by the LbL
assembly technique. Urease was adsorbed in alternation with the oppositely charged
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Figure 1. Fluorescence intensity (a) and thickness (b) of multilayer films made of indicated ADPy
with different AMPS mole fraction and PDADMAC as a function of the layer number.

Journal of Experimental Nanoscience 135

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
1
7
 
1
5
 
J
a
n
u
a
r
y
 
2
0
1
1



polyelectrolytes onto polystyrene (PS) colloid nanoparticles as either polycation or
polyanion switched by the solution pH. Microelectrophoresis, transmission electron
microscopy (TEM), and UV–Vis spectrum absorbance were employed to monitor the
regular and stepwise growth of the multilayer films with the enzyme and counterpart
polyelectrolytes. The colloid nanoparticles coated with negatively charged urease were
found to be more stable than those coated with positively charged urease. The catalytic
activity of the urease immobilised on the PS nanoparticles, having higher storage stability,
was 23.67% of that for the free urease in aqueous solution. Addition of 0.05M NaCl
increased the activity of the immobilised urease by 65%. Coverage of synthetic
polyelectrolyte layers on the urease layer reduced the activity of the immobilised urease.
Therefore, by adding salts or covering with polyelectrolytes, we have achieved an
enhancement or restraint of the bioactivity of immobilised enzyme, indicating a novel
method for biotechnology.

Novel enzyme multilayer films on the surfaces of polystyrene (PS) colloid particles
were fabricated by LbL self-assembly. Superoxide dismutase (SOD) was adsorbed on the
PS particles as either polycation or polyanion switched by adjusting pH alternatingly with
the oppositely charged polyelectrolytes. Zeta-potential and TEM results indicated the
regular and stepwise growth of the multilayer structure. The amount of the immobilised
SOD was estimated from the difference in SOD bioactivity of the supernatant after
adsorption and SOD solution before adsorption by using the pyrogallol oxidation method.
The immobilisation amount of SOD was 12 and 51 IU when adsorbed in pH¼ 8.0 as a
polyanion and in pH¼ 4.3 as a polycation, respectively. However, the relative activity of
the former was 23.4% while that of the latter was 2.9%, compared to that of free SOD in
aqueous solution. Anionic SOD was found to form more regular and smooth layers on the
PS particle surface and cationic SOD to aggregate. By adjusting pH of the adsorption
solution we can optimise the assembled status and bioactivity of particle-immobilised
enzyme.

4. Biocompatible nanocapsules fabricated by LbL

Polysaccharide multilayer nanocapsules were fabricated in aqueous media by LbL
self-assembly of chitosan (CHI) and alginate (ALG) on monodisperse polystyrene (PS)
nanoparticles with a diameter of 180 nm as the template, followed by removal of the
templates through exposed to THF (Figure 2). The pH and added salt concentration in the
polyelectrolyte deposition solutions were optimised to ensure the alternating deposition.
Consequently, the most suitable pH values were found to be 6.0–8.0 for ALG and 3.5 for
CHI. The NaCl concentration in the adsorption solutions was 0.5M, which led to an
average thickness of about 13 nm for five bilayers of CHI/ALG shell-wall. �-potential
indicated the stepwise and alternating adsorption of CHI and ALG to form multilayer film
on the PS nanoparticles. The characteristic bands of PS residue almost disappeared in the
IR spectrum of the nanocapsule after dipped in THF, confirming thorough removal of PS
templates. TEM, scanning electron microscope (SEM), and atomic force microscopy
(AFM) were utilised to observe the nanocapsules of �225 nm in diameter. A hydrophilic
drug model, acridine hydrochloride (AH), was chosen to investigate the loading and
release properties of the nanocapsules. The positively charged AH spontaneously
deposited into the capsule due to the electrostatic interaction with the negatively charged
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styrene sulfonate residues from the PS template inside the capsule (Figure 3). The rate of
AH release became slightly slower when the capsule wall was cross-linked with
glutaraldehyde, but the accumulative released amount for the crosslinked capsule was
obviously reduced. These nanocapsules made from nature polysaccharides have a
potential application in controlled drug release.

5. Direct microcapsulation of drug microcrystals by LbL

Indomethacin (IDM) microcrystals sized 5–10mm were directly encapsulated with natural
polysaccharides CHI and ALG through the LbL self-assembly. Due to partial dissolution
of IDM in the deposition solution, the retention of the IDM microcrystals gradually
decreased with increasing deposition times and became 47.7% as 10 layers of
polysaccharides formed. The release rate of the IDM from the microcapsules was
monitored with UV absorbance. The half release time t1/2 of IDM in the microcapsule
increased with the layer number and the initial burst was reduced after encapsulation. It
was found that added NaCl concentration even up to 0.5M did not affect the release rate,
while increasing the release temperature remarkably speeded up the release process. The
prolonged release of the encapsulated IDM was still observed when the aqueous release
solution contain 20 vol% ethanol. It was very interesting that increasing deposition

3500 3000 2500 2000 1500 1000 500

Wave number (cm–1)

(c)

Hollow capsule

Core-shell particle

PS

(a) (b)

Figure 2. TEM (a) and SEM (b) images of hollow nanocapsules, the scale bars correspond to
100 nm. (c) IR spectra of PS nanoparticles, core-shell particles with five bilayers of CHI/ALG and
the hollow nanocapsules. The characteristic bands for PS disappeared from the capsule spectrum.
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temperature from 20�C to 60�C reduced the release rate efficiently, owing to the increase in

multilayer thickness and formation of a more perfect multilayer film (Figure 4). The small-

angle X-ray scattering (SAXS) profiles indicated that the thickness for the multilayer films

deposited at 20�C, 40�C, and 60�C, was 16.3, 24.2, and 32.1 nm, respectively, with

increased perfectness. This finding provides a simple method to control the permeability of

the LbL assembled multilayer films.

A

B Centrifuge

C 

Release

Loading

Figure 3. Schematic representation for the loading and release of AH by the nanocapsules. The
positively charged AH penetrates through the capsule wall and spontaneously deposits into the
capsule with the negatively charged PS co-polymer with SS units inside (step A). The loaded AH
cannot be completely released from the capsules duo to the electrostatic attraction between AH and
the PS co-polymers (step C).
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Figure 4. (a) Release profiles of IDM from (ALG/CHI)5 microcapsules in pH 7.4 buffer at 20�C
with indicated deposition temperatures; (b) SAXS profiles of the five-bilayer ALG/CHI films
deposited on quartz slide at indicated temperatures to determine the film thickness. The data were
vertically shifted to avoid overlapping.
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6. Loading and release of insulin for polysaccharide multiplayer microcapsules

Polysaccharide multilayer microcapsules were fabricated in aqueous media by the LbL

self-assembly of CHI and sodium ALG on melamine formaldehyde (MF) microparticles

of 2.1mm diameter as templates, followed by removal of the templates by dissolution at

low pH. The loading process was observed with the confocal laser scattering microscope

(CLSM) using fluorescence labelled insulin. Insulin was spontaneously loaded into the

ALG/CHI microcapsules at pH below its isoelectric point of 5.5, where insulin was

positively charged and the loading capacity increased with pH decreasing from 4.0 to 1.0

(Figure 5) [31]. The reason for this spontaneous loading was the electrostatic attraction

between positive insulin and negatively charged complex of ALG/MF residues inside the

microcapsule, which was formed during the MF particle dissolution. A novel two-

temperature loading procedure was proposed as loading at 20�C for the first hour and at a

higher loading temperature for the second hour. The loading insulin at 20�C for 1 h was

sufficient to reach the loading equilibrium; the second hour loading at a high temperature

produced a more perfect multilayer shell and reduced the loss of loaded insulin during the

rinse. This procedure was very significant so that increasing the second loading

temperature from 20�C to 60�C not only increased the insulin loading capacity, but also

slowed down its release rate (Figure 6). The release rate of insulin at pH 7.4 was found

much faster than that at pH 1.4 due to the negative charge on the insulin. Cross-linking the

ALG in the microcapsule shell with calcium ions (Ca2þ) or re-sealing the microcapsules

with additional layers also remarkably decreased the insulin release rate. The results

provide a simple method to control the loading and release of charged water-soluble

molecules with the polysaccharide microcapsules.

7. Combination of solvent evaporation and LbL for drug-loaded capsules

The initial burst release of drug from microparticles remains an unsolved problem. Here,

we deposited polysaccharides on drug-loaded microspheres using the LbL self-assembly

to produce core-shell microparticles for sustained drug release [34]. The ibuprofen

(IBU)-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microparticles were
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Figure 5. CLSM photos showing the FITC-insulin loaded into the ALG/CHI microcapsules
at pH¼ 8.0 with negatively charged insulin (a) and pH¼ 3.0 with positively charged insulin after
rinse (b); (c) the loading capacity of the ALG/CHI microcapsules as a function of pH of the insulin
bulk solution.
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fabricated by conventional solvent evaporation. The processing parameters, such as pH of
water phase, drug/polymer ratio, polymer type, and emulsifier concentration, were
optimised according to the encapsulation efficiency and drug loading as pH¼ 4.0, drug/
polymer ratio¼ 10/50wt%, hydroxyvalerate (HV) in PHBV¼ 6wt%, and PVA con-
centration¼ 1w/v%. The multilayer shells of CHI/sodium ALG and were formed on the
IBU-loaded PHBV microparticles using the LbL self-assembly. The in vitro release
experiments revealed that, as for the microparticles with three CHI/ALG bilayers, the
initial burst release of IBU from the microparticles was significantly suppressed and the
half release time was prolonged from 1h for the bare microparticles without coverage to
62 h for the microparticles with three CHI/ALG bilayers (Figure 7). The compact
CHI/ALG multilayer film was observed with an AFM due to the matched distance of
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profiles of insulin from (ALG/CHI)5 microcapsules loaded with two-temperature loading at
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charges along the CHI chain and those along the ALG chains (Figure 8). The present
combination for encapsulating drug-loaded microparticles demonstrates an effective way
to prolong the drug release with reduced initial burst.

8. Combination of adsorption by porous CaCO3 microparticle and encapsulation by

polyelectrolyte multilayer films for sustained drug delivery

Combination of adsorption by porous CaCO3 microparticles and encapsulation by
polyelectrolyte multilayers via the LbL self-assembly was proposed for sustained drug
release [33]. First, porous calcium carbonate microparticles with an average diameter of
5 mmwere prepared for loading IBU as a model drug. Adsorption of IBU into the pores was
characterised by ultraviolet, infrared, thermogravimetric analysis, BET experiment, and
X-ray diffraction. The adsorbed IBU amount � was 45.1mg g�1 for one-time adsorption
and increased with increasing adsorption times. Finally, multilayer films of protamine
sulfate (PRO) and sodium poly(styrene sulfonate) (PSS) were formed on the IBU-loaded
CaCO3 microparticles by the LbL self-assembly. Amorphous IBU loaded in the pores of
the CaCO3 microparticles had a rapider release in the gastric fluid and a slower release in
the intestinal fluid, compared with the bare IBU microcrystals. Polyelectrolyte multilayer
assembled on the drug-loaded particles by the LbL reduced the release rate in the both
fluids (Figure 9). The porous inorganic particles are useful to increase loading capacity and
the polyelectrolyte multilayer films coated on the particle assuage the initial burst release.

9. Enhanced resistance of polyelectrolyte multilayer microcapsules to pepsin erosion and

release properties of encapsulated indomethacin

The ALG and CHI multilayer films deposited directly on IDM microcrystals through the
LbL self-assembly were partially destroyed after incubation in an enzyme pepsin solution
due to the enzymatic degradation of CHI. After pepsin erosion, the IDM release from the
microcapsules monitored by UV absorbance was obviously accelerated due to desorption
(Figure 10). In order to enhance the stability of the ALG/CHI multilayer film to the
enzymatic erosion, some physical and chemical methods were established to increase
film thickness or to cross-link the polysaccharides within the film [28]. Increasing the

Figure 8. AFM images of the (CHI/ALG)3 film on quartz slide.
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layer number and raising the deposition temperature effectively slowed down the

enzymatic desorption and release rate. Especially, increasing deposition temperature

was more effective due to producing a more perfect structure in the

ALG/CHI multilayer film. Cross-linking the neighboring layers of ALG and CHI with
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Figure 9. Release profiles of (a) bare IBU microcrystals, (b) IBU-loaded CaCO3 microparticles and
(c) IBU-loaded microcapsules with 5 bilayers of PRO/PSS in simulated intestinal fluid (pH 7.4) at
37�C. The insert is SEM image of the IBU-loaded microcapsules coated with five bilayers of
PRO/PSS.
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1-ethyl-3-(3-dimethylamino-propyl)carbodiimide in the ALG/CHI multilayer film
significantly reduced the enzymatic desorption and release rate (Figure 11). Therefore,
increasing deposition temperature and cross-linking neighboring layers are effective
methods to protect the multilayer film fabricated using LbL assembly from the enzymatic
erosion and to prolong the release of the encapsulated drug.

10. Outlook

The LbL self-assembly technique has become a powerful method for micro/nano-
encapsulation. Using polyelectrolyte multilayer films to coat drug can simply reduce the
release rate and assuage the initial burst release, which has been demonstrated in the above
examples. However, LbL is a time-consuming procedure with low loading efficiency,
which is a big disadvantage for industrial applications. How to overcome this problem is
one of most important topics in this area. On the other hand, the stability and
metabolisability of the polyelectrolyte multilayers fabricated by the LbL in the
physiological environment still requires further investigation in the near future.
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[8] F. Caruso, R.A. Caruso, and H. Möhwald, Nanoengineering of inorganic and hybrid hollow

spheres by colloidal templating, Science 282 (1998), p. 1111.
[9] P.T. Hammond, Recent explorations in electrostatic multilayer thin film assembly, Curr. Opin.

Colloid Interface Sci. 4 (2000), p. 430.
[10] M. Schönhoff, Self-assembled polyelectrolyte multilayers, Curr. Opin. Colloid Interface Sci. 8

(2003), p. 86.
[11] D.T. Haynie, L. Zhang, J.S. Rudra, W. Zhao, Y. Zhong, and N. Palath, Polypeptide multilayer

films, Biomacromolecules 6 (2005), p. 2895.
[12] Q.L. Sun, Z. Tong, C.Y. Wang, B.Y. Ren, X.X. Liu, and F. Zeng, Charge density threshold for

LbL self-assembly and small molecule diffusion in polyelectrolyte multilayer films, Polymer 46

(2005), p. 4958.
[13] R.P. Lanza, R. Langer, and J. Vacanti, Principles of Tissue Engineering, Academic Press,

San Diego, 2000.
[14] S.R. Bhatia, S.F. Khattak, and S.C. Roberts, Polyelectrolytes for cell encapsulation, Curr. Opin.

Colloid Interface Sci. 10 (2005), p. 45.
[15] C.Y. Wang, H.X. Liu, Q.X. Gao, X.X. Liu, and Z. Tong, Facile fabrication of hybrid

colloidosomes with alginate gel cores and shells of porous CaCO3 microparticles, Chem. Phys.

Chem. 8 (2007), p. 1157.

[16] C.Y. Wang, S.S. Liu, X.X. Liu, and Z. Tong, Multilayer shell walls with versatile electron

transfer properties, Macromol. Rapid Commun. 28 (2007), p. 1167.

[17] F. Caruso and H. Möhwald, Protein multilayer formation on colloids through a stepwise

self-assembly technique, J. Am. Chem. Soc. 121 (1999), p. 6039.

[18] C.Y. He, Z.P. Liang, C.Y. Wang, X.X. Liu, and Z. Tong, Immobilization of superoxide

dismutase by layer-by-layer assembly on surface of PS colloid particles and their bioactivity,

Chem. J. Chinese U.� Chinese 26 (2005), p. 88.
[19] Z.P. Liang, C.Y. Wang, Z. Tong, W.H. Ye, and S.Q. Ye, Bio-catalytic nanoparticles with urease

immobilized in multilayer assembled through layer-by-layer technique, React. Funct. Polym. 63

(2005), p. 85.
[20] X. Qiu, S. Leporatti, E. Donath, and H. Möhwald, Studies on the drug release properties
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